The 21st International Symposium on Fault-tolerant Computing, 1991. p 2-9. IEEE Computer Society

Softwar e Defects and their Impact on System Availability
- A Study of Field Failuresin Operating Systems

Mark Sullivan', Ram Chillarege

IBM Thomas J. Watson Research Center,
P. O. Box 704, Yorktown Heights, NY. 10598

Abstract likely to continue given the rise in installed lines of code,
. dependency between vendor products, increased use of parallel-

In recent years, software defec_ts have become the domlnan sm, and smaller timing windows. Clearly, the technology to
cause of customer outage, and improvements in software relia-yesect and recover from software errors will play a critical role
bility and quality have not kept pace with those of hardware. in increasing system availability
Yet, software defects are not well enough understood to provide ’
a clear methodology for avoiding or recovering from them. To Building highly available systems requires a combina-
gain the necessary insight, we study defects reported betweeriion of high quality software (i.e. few defects shipped), recovery
1986 and 1889 from a on a high-end operating system product.mechanisms which mask any software errors that surface in the
We compare a typica| defec[egmar) to one that corrupts a fle'd, and the Capability for non-disruptive maintenance. In
program’s memorydverlay) given that overlays are considered order to build software for highly available systems, it is
by field services to be particularly hard to find and fix. imperative that there exist a good understanding of field prob-
lems: the defects experienced in shipped code and their impact
on the system. Without this understanding, design decisions
e Shows that the impact of aoverlay defect is, on aver- and software engineering methods tend to be ad-hoc. A clear

This paper:

age, much higher than that ofegular defect. model of software errors is also necessary to test new systems
Defi lassify th : o gf_fect_lvely and to validate new de_S|gns. In this regard, fault-
;akeesl?ﬁ:te;;c:s;ygﬁtwaf;?;%_t © programming mis injection methods [Segall88] [Chillarege89] [Arlat89] have

_ _ _ gained interest and are fast becoming a validation and evalua-
e Defineserror trigger to classify the events that cause tjon methodology. Effective fault-injection requires a suite of

latent errors in programs to surface. The error trigger dis- injectable faults which accurately reflect system failure
tribution weights events and environments that are prob- pehavior.

ably inadequately tested. .
y q y There have been several studies of software errors; how-

e Shows that boundary conditions and allocation ever, for the most part, they concentrate on the system develop-
management are the major causes of overlay defects, notment and test phases. [Endres75] studied software errors found
timing. during internal testing the DOS/VS operating system. His
(bu Shows that most overlays are small and not too far classification was oriented towards differentiating between
from their intended destination. high-level design faults and low level programming faults.
Another early error study, [Thayer78] provides some of the

ZUfrther analysis are %rovided on defea? 'r? fixes to o_lt_uer same level of error analysis that our study provides, but on
efects, symptoms, and an assessment of their impact. es%rrors discovered during the testing and validation phases.

results provide a base line understanding useful to designers anqg|ass81] provides another high level, specification-oriented
developers. The data will also help develop realistic fault icyre of software errors discovered during the development
models for use in fault-injection experiments. process. [Basili84] studies the relationship between software

errors and complexity. [Chillarege 91] provides an analysis of

) defects found during the test process and their impact on the
1. Introduction growth curve.

Software failures have become a dominant cause of sys- Software errors experienced in the field have different
tem unavailability. [Gray90] shows that in the the past 5 years characteristics from those detected during the system test phase.
the main cause of outage has shifted from hardware and mainte-Environmental differences and workload variation often exer-
nance failures to failures in software and to a lesser extentcise defective code that the testing procedure has missed.
operations. In fact, improvements in hardware and maintenanceynfortunately, most of the published literature on field failures
shrank their contributions to outage from 50% to 10%, while concentrates on reliability metrics and trends (for example,
those due to software grew from 33% to 60%. The trend is [Levendel89]) rather than error characteristics. A number of
studies on field failure done at Stanford [Mourad87] [lyer86]

! Mark was with IBM during the Summer of 90. He is currently and CMU [Castillo81] used data from error logs to track system
working towards his Ph.D. at the University of California, Berkeley. failures. Error log records are generated by the system after

Ram
The 21st International Symposium on Fault-tolerant Computing, 1991. p 2-9. IEEE Computer Society

Ram

Ram

programs fail with an abnormal end (ABEND) completion customer can be estimated from these standard attributes:
code. Although error logs accurately count failure frequency,
they give little semantic information about the error that caused Severity is a number between one and four. A severity one
the failure. error (the highest) corresponds to a system outage and consider-
Understanding software errors often requires a careful able impact to the customer. Severity two, also S|gr_1|f|es dam-
age, however, a circumvention or temporary solution to the

inspection of the environment of failure, the traps and dumps) ;
used, and the programming changes that were required to fix theerror was readily available. Three and four correspond to lesser

defect. This paper uses data tracked by IBM field service on darrt;?ge and can range from annoyance to touch and feel type
software errors reported against a high-end operating systemP'©P'€MmS.
product. The text of the error report provides the extra level of

detail necessary for good fault characterization. HIPER Highly pervasive (HIPER) errors are flagged by the

team fixing the error. HIPER software errors are those con-
The study analyzes two groups of software errRegu- sidered likely to affect many customer sites -- not just the one

lar and Overlay, providing comparisons when relevant. The that first discovered the error. Flagging a error as HIPER pro-

Regular software error group represents the typical softwareyides a message to branch offices to encourage their customers

error encountered in the field. The other group, Overlay errors, upgrade with this fix.

is composed of software errors that resulted in a storage over-

lay. IBM field service uses the term “overlay” to describe |pL errors destroy the operating system's recovery mechanism

corruption of program memory. A network protocol module, and require it to initiate an Initial Program Load (IPL) or

for example, could accidentally overlay a process control block “reboot.” An IPL is clearly a high impact event since it can

with the contents of a message buffer. cause an outage of at least 15 minutes. This metric is probably
The decision to single out overlays came in part from the the most objective of the impact measurements since there is lit-

opinion of experienced field service and development person-tle room for data inaccuracy. While labeling a error HIPER or
nel. Itis commonly accepted by service personnel that overlays Severity one is a judgement call, the occurrence of IPL is
are the hardest software errors to find and fix. It is also believed difficult to mistake.

that they have a significant impact on system availability. An This paper uses error data from a high-end operating sys-
additional reason to better quantify overlay error characteristics tem for the period 1985-1989, representing several thousand
is that fault-injection experiments commonly use fault models machine years. It includes errors in the base operating system as
based on overlay errors. well as a number of products that tend to be bundled with it, but

The study shows that Overlay defects have a higher does not include any major sub-systems such as database
impact on average than Regular defects. Both groups of defectgnanagers. Since we are primarily interested in errors that affect
have been categorized by theirror type andtrigger event. availability we have restricted the study to only severity 1 and
The error type provides insight on the programming mistakes 2 errors.
that cause field failures. The trigger illustrates the situations in Software defects are similar to design errors, in that once
a customer environment that allow the latent errors to surface. fixed, the do not show up again - unless the fix is in error too.
We also analyze failure symptoms auaig fix errors -- errorsin - An APAR represents a unique software defect that escaped the
fixes of earlier errors. Distributions are provided for each error testing process. It may be found several months after the pro-
categorization. duct is in use and may only be triggered by a specific customer

Section 2 describes the defect database, the data, and€nvironment. Thus, APARs are different from a classicial
sampling technique used. Also described are the categorieshardware component which when replaced has yet a finite pro-
used for error type and trigger. Section 3 contains the results bability of failure and therfore can be associated with a failure

and a discussion of the errors. Section 4 summarizes some ofate. Associating a failure rate with an APAR is not meaning-
the key findings of the paper. ful, for once fixed, they do not reappear. The only variant is

when the fix is in error and causes another defect.

2. Software Error Datafrom RETAIN

. ' 2.1. Sampling from RETAIN
The data we use comes from an IBM internal field ser-))
vice database called REmote Technical Assistance Information Data from APARs contain both keyed fields and free-
Network (RETAIN). RETAIN serves as a central database for form text. The error type and trigger event are identified by
hardware problems, software problems, bug fixes, release infor-reading the text and categorizing the APAR. In order to limit

mation, etc. The database is available to IBM field service the time required to complete the study, we used sampling to
representatives world-wide. reduce the number of APARS to be read and categorized.

Software error reports in IBM parlance are called To analyze Regular and Overlay software errors, we
Authorized Program Analysis Reports, or APARs for short. An needed to construct a group of representative APARs for each.
APAR describes a software error recorded against a specificThe population of Regular errors is the complete set (approxi-
program product. The APAR report contains a few pages of mately 3000) of severity 1 or 2 errors from 1986-1989 for the
text describing the symptoms of the problem, some context andOperating systems studied; thus, the Regular APAR group was a
environment information, and a description of the fix. In addi- random sample from this population. To identify Overlay
tion to the textual description there are fields that contain some €rrors from this population, we searched the text parts of the
standard attributes of the error. An error's impact on the APAR for strings containg words such as “overlay,”

“overwrote,” etc. which are commonly used in descriptions of the overlay.
overlay errors. This search yielded APARs that potentially
overlays, but further reading is necessary to weed out ones tha
are not.

Register Reused: In assembly language code, a register is
teused without saving and restoring its original contents.

Type Mismatch: A field is added to a message format or a

: . X . structure, but not all of the code using the structure is modified
the population of all severity 1 and 2 errors is that the severity 2 to reflect the change. Type mismatch errors could also occur
errors far out number the severity 1 errors. Thus, in any sam- when the meaning of a bit in a bit field is redefined

ple, there would be too few severity 1 errors to be categorized -- =~~~)) o
probab|y fewer than the number of Categories_ To overcome Uninitialized Pointer: A variable containing the address of
this problem, we pulled independent random samples from the data is not initialized.

population of severity 1 and 2. Each sample was large enoughyndefined State: The system goes into a state that the
to allow the necessary categorization. We then combined thedesigners had not anticipated. In overlay errors, the bad state
results from the severity 1 and 2 samples in the proportion they caused the program to mistake the contents of a memory region.
are represented in the population. We used boot-strappingror example, the designer may have assumed that pages are
[Efron86] to combine the samples rather than a simple weighted gjways pinned in memory when a certain routine is called. If
average. Boot-strapping has the advantage that when used tghe routine is called on an unpinned page, memory corruption
make confidence-interval estimates it does not depend oncan occur. For the Overlay data set, most of these undefined

assumptions about the distribution of the parent population. In state errors had to do with management of page tables.
all, we classified 150 APARs in the Regular sample and 91

from the overlay sample. We estimate the proportion of the
overlay errors to be between 15% and 25% of the severity 1 and
2 errors.

One of the problems in straight random sampling over

Unknown: The error report described the effects of the overlay
(the part of memory that was overlaid), but not adequately for
us to classify the error.

The Regular sample containing both overlay and non-
2.2. Characterizing Softwar e Defects overlay errors required a few additional error types:

There are many different ways to think about the cause Data Error: An arithmetic miscalculation or other error in the
of an error. Eventually, we chose the two described in the code makes it produce the wrong data.

introduction as error type and error triggeError type is the PTF Compilation: Individual bug fixes are distributed together
low level programming mistake that led to the software failure. on 5 PTF (Program Temporary Fix) tape. Occasionally, a bug
This classification had to describe the error well enough that it jg repaired in one PTF but lost when the next one is compiled (a
could serve as the basis for future fault injection experiments. |gter bug fix is applied to an earlier version of the software).
Theerror trigger event classification was meant to give infor- . .

mation about the environment providing insight to the testing Seduence Error: Messages were sent or received in an unex-
process. When defective code survives the testing process an®€cted order. The system deferred an action, such as an ack-
is released to customers, some aspect of the customer's exec?0WWledgement message, but then forgot to execute the action.
tion environment must have caused the defective code to beStatement Logic: Statements were executed in the wrong order
executed. The trigger classification distinguishes several waysor were omitted. For example, a routine returns too early under
in which defective code could be executed at the customer sitesome circumstances. Forgetting to check a routine’s return code
when the same defective code was never executed during testis also a statement logic error.

ing. Synchronization: A error occurred in locking code or syn-
To determine error and trigger classes, we made severalchronization between threads of control.
passes through the sgrnple looking for commonall.tles in the Unclassified: We understood what the error was, but couldn’t
errors. The error classifications had to be orthogonal; each eITOe: i+ into a cateqor
report had to fit into only one class. The classification also had gory.
to have few enough classes so the confidence intervals on the
data were acceptable. When classes were too small, we com- . .
bined them into larger, more general classes. 24. SoftwareError Triggering Events
This classification describes what allowed a latent error
2.3. Error Types to surface in the customer environment. For every error in the

A few programming errors caused most of the overlays. sample, we determined the error's triggering event.

These are: Boundary Conditions. Often software failures occur under
limit conditions. Users can submit requests with unusual
parameters (e.g. please process zero records). The hardware
configuration may be unique (e.g. system is run with a faster
disk than was available during testing). Workload or system
configuration could be unique. (e.g too little memory for net-
Copying Overrun: The program copies bytes past the end of a work message buffering).

buffer. Bug Fixes: An error was introduced when an earlier error was
Pointer Management: A variable containing the address of fixed. The fix could be an error that is triggered only in the
data was corrupted. Code using this corrupted address causedustomer environment, or the fix could uncover other latent

Allocation Management: One module deallocates a region of
memory before it has completely finished with it. After the
region is reallocated, the original module continues to use it in
its original capacity.

bugs in related parts of the code. collection of metrics provide different ways to compare the
relative impact of the defect groups. Table 1 shows the percen-
tage of APARs that caused IPLs, rated HIPER, or rated Severity
1. By each of these measures, overlay defects clearly have a
Recovery or Error Handling: Recovery code is notoriously higher impact than regular defects. This finding concurs with
difficult to debug and difficult to test completely. When an the perception of IBM’s field service people.

error is discovered, the system runs a recovery routine to repair
the error. The recovery code could have errors.

Client Code: A few errors were caused by errors in application
code running in protected mode.

In order to understand why overlay errors have high
impact, let us first re-examine what an overlay defect is in
Timing: Timing triggers are an important special case of boun- greater detail. Anoverlay is called such because the post-
dary conditions in which an unanticipated sequence of eventsmortem of the failure reveals a part of the program storage was
directly causes an _err_or. An error that o'nly occurs when the corrupted. For example, a network protocol module can over-
operating system is interrupted at an inopportune momentjay a control block with the contents of a message. After the

would be a timing-triggered error. overlay, there are potentially two failures: one due to the lost
Unknown: The triggering event could not be determined from Mmessage and another due to corrupted information in the control
the available data. block. Often the module using the corrupted data, rather than
the one containing the original error, causes the system to fail.
2.5. Symptom Codes Thus, overlays, in addition to being hard to track down, also

)) _ cause propagation of errors.
When an APAR is opened a symtom code is entered into

a field. This is often used by field personnel to search for other
failures matching these symtpoms. Since this was a keyed field
it did not require any classification effort. Failure symptoms fall
into these classes:

Recovery is usually set up to deal with problems that
could be encountered during the execution of the module and
some unexpected status conditions. The recovering subsystem
usually tries to reinitialize itself and re-execute the failed opera-
tion. If retry fails, a higher level subsystem attempts to recover
ABEND: An abnormal program termination occurred. The from the error. A propagated error resulting in the loss of key
currently running a application program fails and must be res- control information can often defeat the established recovery

tarted. mechanisms, accounting for the higher IPL counts in the Over-
Addressing Error: The operating system fails after trying to lay sample.

use a bad address. It should be noted that an addressing error, Overlays caused by the operating system are often within
in this system, does not force a reboot as it does in most works-the operating system (as we will see shortly). It has also been
tation operating systems. shown through experiments [Chillarege 89, Chillarege 87] that
Endless Wait: Processes wait for an event that will never Such errors in the operating system can remain latent for a long
occur. time. Large latency provides greater opportunity for propaga-

tion, resulting in possibly multiple error conditions that are hard
to recover from. It seems that change teams recognize this pos-
sibility which accounts for the higher HIPER counts.

Incorrect Output: The operating system produces incorrect
output without detecting the failure.

Loop: The operating system goes into an infinite loop. IPL is

required to restart the system. 3.2. Characterizing Overlay Errors

Message: The operating system cannot perform the requested Table 2 shows the breakdown of overlay error types.

function but prints an error message on the screen and performsEach row in the table represents one of the error types defined

local recovery rather than ABENDing in sections 2.2.2. The columns are the fraction of all APARs,
HIPER APARs, and IPL APARs caused by each type of error.

3. Results Note that a defect may be counted both under HIPER and IPL.

The earlier sections described the data source, sampling
technique, and categorization of defects. Here we present the
results and discuss their significance.

Percent of
Defect Type allAPARs HIPERs IPLs
3.1. Impact of Overlay Errors Allocation Mgmt. 19 31 17
No single metric is best for evaluating the customer Copying Overrun 20 13 5
impact of different of regular and overlay defects. However, a Pointer Mgmt. 13 16 27
Register Reused 7 6 11
Impact Metric Overlay Sample Regular Sample g;érgtﬁglszrﬁgtzt{' 152 1120 %
IPL (reboot) 19.8 6.3 Undefined State 4 0 17
HIPER 18.7 5.2 Unknown 13 0 5
HIPER or IPL 30.8 10.8 Synchronization 8 12 17
Severity 1 17.6 12.6

Table2. Overlay Sample Error Types
Table 1. Error Impact: Overlay vs. Regular Sample

The most common error types were memory allocation “distance” between the overlaid data and the area that should
errors, copying overruns, and pointer management errors.have been written. For example, a copying overrun error cor-
Together, these three classes accounted for more than half ofupts data immediately following the buffer that the operating
the total. The error types with the highest impact were memory system is supposed to be using, hence, has distance “Following
allocation and pointer management errors, which together data structure.” An example of the distance type “Within data
accounted for about half of the high impact errors. structure” is a type mismatch error in which the operating sys-

An interesting result is that memory allocation errors tem overlays a field of the same structure it intends to update.

were more likely than locking or synchronization errors to Summarizing the size and distance tables, we find that
cause overlays in shared memory. For example, a process camost of the overlays are small with a vast majority of them
request a software interrupt and then free a region of memoryclose to their intended destination. Only about a fifth were
before the interrupt is scheduled. If the interrupt tries to use this “wild stores” that overwrite distant, unrelated areas of storage.
freed memory, an overlay occurs. While the garbage collection This creates a challenge for fault-detection mechanisms and for
did not work correctly, synchronization is correct; the interrupt recovery techniques. The smaller the granularity of overlays,
is not scheduled while the original process is using the memory the more expensive the protection mechanism, either hardware
region. The most common synchronization errors occurred or software.

when interrupt handlers corrupted linked list data structures.

Mismanagement of address data (pointers) caused a3-3. Characterizing the Regular Sample
significant fraction of errors and many of the high impact errors. The regular sample corresponds to defects that are
It makes sense that a high proportion of operating system errorsrepresentative of the typical defect in this product. Recall that
would affect addresses since much of what the operating systemhe regular sample was drawn from all severity 1 and 2 defects.
does is manipulate addresses. Also, corrupted pointer datan all we classified 150 APARs. Table 5 summarizes the types
structures are difficult to repair, making IPL necessary. of errors found in the regular sample. As in the table 2, each

Although allocation management, pointer management 'ow represents one of the error types defined in sections 2.2.2

and copying overrun have about the same number of errorand 2.2.3. The first column shows the total percentage of
reports filed against them, copying overruns have low impact. APARs attributed to the error type. The second and third show

Many of these errors appeared in the terminal 1/0 handling code the fraction of HIPERs and IPLs caused by the error type. Note

or in code for d|sp|ay|ng messages on the console. COpy|ng that a defect may be counted both under HIPER and IPL.

_ The error type distribution for the Regular sample breaks
counter used to determine how many bytes to copy. Many oth- errors down fairly evenly into twelve classes (plus a class for

overruns were often caused by overflows or underflows of the

ers were "off-by-one" errors. In network-management code and
terminal 1/0 handlers, buffers are processed slightly and passed

from one routine to another. If the offset to the beginning of Overlay Distance Percent of Overlay APARS
valid data or the count of valid bytes is corrupted, copying over- Following data struct 30.8

runs occur. Most copying overruns involved only a few bytes. Anywhere in storage 18.7

The few overruns which had high impact, however, caused Within data struct 26.4

massive corruption of memory. Unknown 24.2

The few overlay errors caused when the system went
into an undefined state were fairly severe. For the most part,
these errors occurred in page fault handling. When the page
fault handler became confused about a process state, the process

Table 4. Distance Between Intended Write Address
and Overlaid Address

eventually corrupted so much of the system that no recovery Percent of
was possible. The errors were often extremely complex. The Defect Type allAPARs HIPERs IPLs
reports usually listed a long chain of separate events and propa- Allocation Mgmt. 7 4 0
gations that had to occur before the failure would occur. Copying Overrun 2 0 4
Recovery system designers and fault-injection experi- E%:ﬁ;ﬁgg?;tr g 18 8
mentors both need two pieces of information about overlays to Deadlock ’ 5 0 58
develop fault models: the overlay’s size and its distance from Data Error 6 5 3
the correct destination address. Table 3 shows the average size PTE Comilation 8 0 0
of an overlay in bytes. Note that most overlays are small, Register £eused 3 4 g
nearly half are less than 100 bytes. Table 4 gives a rough Sequence Error 5 0 d
Statement Logic 7 4 0
Overlay Size Percent of Overlay APARS Synchronization 9 0 22
Less than 100 bytes 48.4 Type Mismatch 1 0 0
100 to 256 bytes 253 Undefined State 12 49 @
One or more pages 4.4 Unknown 9 0 3
Unknown size 22.0 Other 10 24 0

Table 3. Average Size of an Overlay

Table5. Regular Sample: Error Types

Unknown error types and an Other class combining several
unclassifiable errors). These twelve classes can be regrouped

into three larger classes: overlay and overlay-like errors,) Percent of
concurrency-related errors, and administrative errors. Impor- Defect Trigger _ all APARs HIPERs _ IPLs
tant error types from the overlay sample -- pointer management, Boundary Cond. 34 56 4
copying overrun, pointer initialization, and memory allocation Bug Fix 16 31 3
errors -- together make a fairly large sub-group (24 percent) of Customer Code 2 0 Qg
the regular sample. Many of these were not identified in the Recovery 13 S 31
text as overlay errors, but were errors which probably involved No Trigger 12 0 0
overlays. Timing 11 8 59
Unknown 13 0 3

Many of the non-overlay errors were concurrency-
related. Common errors include deadlocks 5 percent, sequence
errors 5 percent (programmer assumes that external events will
always occur in a certain order), undefined state 12 percentRegular sample -- accounting for roughly the same fraction as
(programmer assumes an external event will never occur), andtiming.
synchronization errors 8 percent. Among the non-overlay
errors, another large class of errors are administrative. PTF
compilation errors are mistakes made in the error fix distribu-
tion rather than errors in the code itself.

Table 7. Regular Sample: Error Triggering Events

A surprising result in both samples is that boundary con-
ditions accounted for the largest fraction of RETAIN's errors
(34 percent) and a high percentage of its HIPER errors (56 per-
cent). Among overlay errors, boundary conditions had much
lower impact, but still accounted for a quarter of the errors stu-
died. Boundary conditions are the type of error that one would

This section characterizes the events that make latentexpect testing to detect most easily. In fact, many unanticipated
errors surface in code that has passed through system test. Aoundary conditions continue to arise after the software is
defect in the field can be found months after a product has beenreleased.
in use. When such latent defects do surface it is usually due to Code reuse can partially explain the high incidence of
stress or environmental conditions that allow them to surface. g(rgrs triggered by boundary conditions. Programmers often
Clearly, these conditions are not exercised during system test, se the services provided by an old module rather than write
or they would be detected earlier. Ttiggger is meant to cap- e\ ones with slightly different functionality. Over time, some
ture the condition that causes defective code to be executed,qyles are used for things the original designer never con-
The trigger, thus, provides insight into areas which additional gjgered. while this increases productivity, it also lessens the
system test effort could help decrease the defect exposureggrectiveness of module-level testing. The tests run on the old

Tables 5 and 6 show the breakdown of the regular and overlay yqqyle by the original programmer do not stress aspects of the
samples by error trigger. This time, the rows represent errors o qule used by newer clients.

attributable to each trigger type defined in section 2.2.4.

3.4. Error Triggering Events

Conventional wisdom about software failures in the field 3.5. Errorsintroduced During Bug Fixes
is that most are caused by timing-related problems. Because it Not every fix to a defect is perfect. Sometimes, the fixes

is impossible to test all possible interleavings of events before themselves have defects, which in this paper are referred to as

the software is released, failures might occur when an untestedbu fix defects. Tables 8 and 9 show the impact of errors in bu
interleaving occurs after months or years in the field. Our data 9 : P . 9
fixes, for the overlay and regular samples respectively. For

partially supports this hypothesis. Bad timing triggered 12 per- these charts, we removed all errors representing non-fix errors
cent of the Overlay sample and 11 percent of the Regular sam- ’ P 9)
from the samples. The ones that remain have a much different

ple APARS. error type distribution than the original sample.
Recovery code is also difficult to test so one would
expect many of the field failures to be triggered by recovery. In
fact, recovery accounted for 21 percent of the Overlay sample’s
error triggers and the largest fraction (35/38 percent) of its high
impact errors. Recovery seemed to be less important to the

For the Overlay sample, many errors in bug fixes were
type mismatches. In these errors, a message format or data
structure originally had one organization. The bug fix changed
the organization, adding or changing the use of a field in the

Percent of
Percent of

Trigger Event all APARs HIPERs IPLls A”Def‘t:"_‘:”'apet a”AleRS H'zplERs 'Pés
Boundary Cond. 24 22 23 ocation Mgmt.

. Copying Overrun 17 22 @
Bug Fix 20 24 > Register Reused 17 19 100
Recovery 21 35 38 9 reu:
g Synchronization 6 0 a
Timing 12 19 28 :

Type Mismatch 31 17 g

Unknown 17 0 0 Uninitialized Ptr 18 20 0
Customer Code 6 0 6 :

Table 6. Overlay Sample: Error Triggering Events Table8. Overlay Sample: Bug Fix Error Types

message or structure. Later, execution of other modules turnedfailure that occurred when code containing errors was executed.
up implicit assumptions about the message format or the dataAn important observation from the symptom chart is that only
structures. For example, the programmer used an unused byt&9 percent of overlay errors are detected as addressing viola-
in a message header only to find after installation of the fix that tions. This suggests that the subsystem damaged by an overlay
another module assumed that this byte was zero under some ciruses the corrupted data before failing, hence has an opportunity
cumstances. The Regular sample had few type mismatch errorso propagate the error. The failing system does not always
of any kind. immediately take an address fault when it uses corrupted

Uninitialized Pointers and Register Reuse errors were memory.

also frequently caused by bad bug fixes. Some of these arose As expected, overlay errors are more likely to cause
when the routine’s parameters were changed without changingaddressing faults than other errors. Non-overlay errors are
all of the code that called the routine. In both these cases, bettermore likely to cause the system to go into endless wait states.
tools for keeping track of cross references between routinesThe common non-overlay error types -- synchronization,
would improve the failure rate of error repairs. sequence error, and undefined state -- often appear in network

Overlay bug fixes have a fairly high HIPER rate, but are and device protocols. The failures caused by these errors often
not a factor in many IPLs. There are several possible reasonsCaUSe processes to wait for events which never happen.

for the high HIPER rate in bug fixes. One consideration is that Non-overlay errors are also more likely to cause
many customers will not have installed the fix by the time the incorrect output than overlay errors. Incorrect output failures
error is discovered. Flagging the second fix as HIPER will include jobs lost from the printer queue or garbage characters
prevent other systems from ever exposing themselves to thewritten into console messages. None of the errors we saw
error. Non-fix errors are probably already installed at most cus- caused failures which corrupted user data.

tomer sites by the time they are discovered. If that is the case,

HIPER may not be the best measure of bug fix impact. Using 4. summary

IPL as an impact measure, errors in bug fixes have low impact.
In the Regular sample, bug fixes have little impact by either
metric.

This paper uses five years of field data on software
defects to develop a taxonomy of defects, providing insight into
their behaviour and impact. The data comes from IBM'’s field
. service database called RETAIN. This paper focuses on those
3.6. Failure Symptoms software defects reported against a specific (unnamed) high-end

When an APAR is opened, the symptom of the failure is operating system product.
recorded. Tables 10 and 11 summarize the symptoms of the This study is performed in the backdrop of a computer

industry faced with tremendous challenges in software reliabil-
ity, quality, and availability. Recent studies have demonstrated

Defect Type all APARZerC(::Ig%fRS IPUs that while, in the past five years hardware reliability has made
Allocation Mgmt. 5 12 0 tre_me_n_do_us improvements, _software has_ not. Unless S(_)ftware
Copying Overrun 5 0 q rel_lablllty improves, it will limit the total reliability and availa-
Pointer Mgmt. 7 0 0 bility possible in computer systems.

Uninitialized Ptr. 7 0 0 Software errors found in the field are fundamentally dif-
Data Error 1 13 100 ferent from classical hardware errors. Like hardware design
PTF Compilation 21 0 (0 errors, once fixed, they will not reappear. It is important to
Register Reused 11 0 0 understand the type of software errors that remain undiscovered
Sequence Error 5 0 D after system test and the conditions in a customer environment
Statement Logic 5 0 @ that allow them to surface. We have chosen to call these attri-
Synchronization 0 0 g butes, theerror type and thetrigger, respectively. This paper
Undefined State 11 74 0 provides distributions of both the error type and the trigger, and
Unknown 5 0 0 provides customer impact information for each of these attri-
Other 6 0 0 butes. The paper focuses on a particular type of defect called

Table9. Regular Sample: Bug Fix Error Types the overlay by field service personnel -- errors which corrupt

Percent of _ Percent of

Failure Symptom _ all APARs _ HIPERs _ IPLs Failure Symptom _ all APARs _ HIPERs _ IPLs
ABEND 21 5 3

ABEND 33 29 22

Address Error 39 38 17 Address Error 21 o 14
Incorrect Output 27 53 6

Incorrect Output 14 5 17| S

Infinite Loop 5 18 22 Infinite Loop 0 o 0

Error Message 3 5 0 Error Message 17 0 18

Endless Wait 5 6 2 Endless Wait 11 29 59

Table 10. Overlay Sample: Failure Symptoms Table11. Regular Sample: Failure Symptoms

program memory. The overlay defect is contrasted to the typi- Performance and Reliability of Digital Computing Sys-

cal defect, herein referred to as ttegular defect. tems. Proc. 11th Fault Tolerant Computing Symp., 1981
The study finds: [Chillarege89] R. ChiIIa_rege and N. S. BO_/ven_. Underst_anding
) Large System Failure -- A Fault Injection Experiment.
(1) Qverlay defects have, on the average, a mgch higher Proc. 19th Fault Tolerant Computing Symp., pages 356-
impact on the system than regular defects. This is meas- 363, 1989
ured by its probability of causing an IPL, its probability [Chillarege 91] R. Chillarege, W. Kao, R. Condit, "Defect Type
of achieving a severity 1 rating, and its probability of and its Impact on the Growth Curve, Proceedings Interna-
being flagged as “highly pervasive” across the customer tional Conference on Software Engineering, May 1991,
base. Austin Tx.
(2) Most overlay defects are due to boundary condition and [Efron86] B. Efron and R. Tibshirani. Bootstrap Methods for
allocation problems. Contarary to popular folklore, they Standard Errors, Confidence Intervals, Statistical Sci-
are less likely to result from timing or synchronization ence, 1(1), 1986. _ _
problems. [Endres75] A. Endres. An Analysis of Errors and Their Causes
in Systems Programs.|EEE Trans. on Software
(3) Most overlays are small (order of a few bytes) and occur Engineering, SE-1(2):140-149, 1975
near the add_ress the software was supposed to \.erte'[G|a8581] R. Glass. Persistent Software ErroiSEE Trans.
Less than a fifth of the overlays cause wild stores in a on Software Engineering, SE-7, March 1981
process address space. [Gray90] J. Gray. A Census of Tandem System Availability
(4) Non-overlay defects are dominated bgdefined state between 1985 and 1990EEE Trans. on Reliability,
errors in which the module implementing a network or 39(4):409-418, Oct 1990.

device protocol mistakes the current protocol state and [lyer86] R. K. lyer, D. J. Rossetti, and M. C. Hsueh Measure-
goes into a wait or deadlock state. ment and Modeling of Computer Reliabiltly as Affected

by System. ACM Trans. on Computer Systems, Aug.

(5) Untested boundary conditions in the software trigger a 1986

majority of failures. Recovery and timing-triggered
failures have slightly higher impact than failures trig-

gered by boundary conditions Large Software Systems: FieldProc. 19th Fault

Tolerant Computing Symp., pages 238-243, 1989

[Levendel89] Y. Levendel. Defects and Reliabilty Analysis of

(6) Among errors in fixes to other errors the causes are [Mourad87] S. Mourad and D. Andrews. On the Reliability of

related to mismatch in data types and interfaces. the IBM MVS/XA Operating System.[EEE Trans. on

(7) While overlay errors are more likely to cause addressing Software Engineering, 13(10):1135-1139, Oct 1987
faults than non-overlay errors, most overlay errors do not [Segall88] Z. Segall, D. Vrsalovic, et. al. FIAT -- Fault Injec-
cause the system to take an address fault. That suggests tion Based Automated Testing Environmeriroc. 18th
that the corrupted data can actually be used before the Fault Tolerant Computing Symp., pages 102-107, 1988

failure occurs, making error propagation more likely. [Thayer78] T. Thayer, M. Lipow, and E. Nelson. Software

.) . . . Reliability. TRW and North-Holland Publishing Com-
The above list summarizes some of the salient findings. It is pany, 1978

also the intent of this paper to provide a more structured and
systematic method to classify and understand software defects.
This understanding is critical to designing appropriate tech-
nigues to shield against them -- either in development or opera-
tion. Furthermore, the paper provides a framework from which
fault-models for fault-injection based evaluation can be
developed.

Acknowledgments

This research required the co-operation and help of
numerous people and organizations. Al Garrigan, Dave Ruth,
Hakan Markor, Jennifer Gors and Darius Baer have been espe-
cially helpful.

5. Bibliography

[Arlat89] J. Arlat, Y. Crouzet, and J. C. Laprie., Fault Injection
for Dependability Validation of Fault-Tolerant Comput-
ing Systems.,Proc. 19th Fault Tolerant Computing
Symp., pages 348-355, 1989

[Basili84] V. R. Basili and B. T. Erricone., Software Errors and
Complexity: An Empirical InvestigationComm. of the
ACM, 27(1), 1984.

[Castillo81] X. Castillo and D. P. Siewiorek. Workload,

