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Abstract

A significant issue in fault injection experiments is that
the injected faults are representative of software faults
observed in the field. Another important issue is the time
used, as we want experiments to be conducted without
excessive time spent waiting for the consequences of a
fault. An approach to accelerate the failure process would
be to inject errors instead of faults, but this would require
a mapping between representative software faults and
injectable errors. Furthermore, it must be assured that the
injected errors emulate software faults and not hardware
faults. These issues were addressed in a study of software
faults encountered in one release of a large IBM operating
system product. The key results are:

• A general procedure that uses field data to generate a
set of injectable errors, in which each error is defined
by: error type, error location and injection condition.
The procedure assures that the injected errors emulate
software faults and not hardware faults.

• The faults are uniformly distributed (1.37 fault per
module) over the affected modules.

• The distribution of error categories in the IBM
operating system and the distribution of errors in the
Tandem Guardian90 operating system reported in
[14] were compared and found to be similar. This
result adds a flavor of generality to the field data
presented in the current paper.

1. Introduction

In the past decade, fault injection [2],[5],[11] has
emerged as an attractive approach to the validation of
dependable systems. Fault injection can be used for
studying the effects of hardware faults and software faults.
However, in both the academic community and industry,
most fault injection studies have been aimed at studying
the effects of physical hardware faults, i.e. faults caused by
wear-out or external disturbances. Only a few studies have
been concerned with software faults, e.g. [10],[13], for the

reason that knowledge of software faults experienced by
systems in the field is limited, making it difficult to define
realistic fault sets to inject. This is crucial if an experiment
is intended to estimate how well a system is working (fault
forecasting). The aim of fault forecasting might be to
estimate coverage, which is an important parameter in
many analytical dependability models.

Another important factor is the time used, as we want
experiments to be conducted without excessive time spent
waiting for the consequences of a fault. Much time can be
spent conducting a fault injection experiment if the
injected faults are rarely activated. Injecting errors rather
than faults would be an approach to accelerate the failure
process, that is, removing transition 1 (fault activation) and
transition 2 (no fault activation) in figure 1. This must be
done without affecting the probabilities of the other
transitions, e.g. the probability of a failure given that an
error exists (transition 3) should be the same as though a
fault would have been injected. Furthermore, the injected
errors must emulate software faults and not hardware
faults. That is, an error can be caused by software faults or
by hardware faults. The latter cause must be factored out,
as the desire is to emulate software faults.
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Figure 1. The fault, error, failure process.
Fault forecasting by means of error injection raises a

number of important questions?

1. What is the appropriate error model that mimics
representative software faults?

2. Where should the error be injected to emulate a
particular software fault?



3. When should the error be injected?

4. How should a representative operational profile (i.e. a
probabilistic description of system usage) be designed
that will maintain reasonable experiment times?

5. What readouts should be collected, and which
measures should be calculated?

6. How should the calculated measures be related to
analytical models of dependability?

Provided that these questions are successfully answered,
one can start fault/error injection experiments. The
experiments may be conducted using any of the fault
injection tools that employ software-implemented fault
injection and modify the data segment, e.g.
[3],[9],[12],[13],[19]. Now we must find out whether the
above questions can be answered.

Questions 5 and 6 are addressed by [1],[2] and [18].
These papers provide the theoretical framework needed to
answer the questions. Question 4 is partly answered by
work on statistical usage testing [16]. However, questions
1 to 3 have been more or less neglected. The current paper
will examine whether and to what extent the field data
obtained on software faults answer the first four questions.
The conclusion to be drawn from that examination is: Yes,
the field data provide the information needed to answer the
questions. More specifically, this paper proposes a
procedure that uses field data to generate a set of errors
(i.e. error type, error location and injection condition),
which maintains the distribution of the set of faults
observed in the field and assures that the injected errors
emulate software faults and not hardware faults. The
procedure is general, although it is illustrated with data
from a specific release of an IBM operating system. The
description in this paper is organized as follows. Section 2
describes the procedure used to gather data on field
defects. The first four questions are answered and
discussed in section 3. A procedure for generating an error
set is proposed and illustrated in section 4, and section 5
concludes the paper.

2. Collection of field defect data

Many studies have dealt with software defects detected
during the development phase, e.g. [4],[8]. However, our
interest is in faults encountered in a system during field
operation. A study of the software defects experienced by
the IBM products MVS, IMS and DB2 is presented in
[20]. The software faults and resulting errors in the
Tandem Guardian90 operating system are presented in
[14]. The current study is inspired by the latter two papers.

The sources of the data presented in this paper are two
IBM internal databases: Orthogonal Defect Classification
(ODC) database and REmote Technical Assistance
Information Network (RETAIN). All defects experienced
by a large operating system product during a two-year

period were extracted from the ODC database, and we are
thus looking at the full population of software faults
experienced by one release over a period of two years. The
corresponding defect reports were also pulled from
RETAIN. The reports were used to classify the erroneous
system state that a particular software fault caused. This
section will first present the ODC attributes used, and
second RETAIN, and the error types used to classify the
erroneous system states that the selected software faults
caused.

2.1 Orthogonal Defect Classification

ODC [6] is a measurement technology that is
consistently applied to a large number of IBM projects,
and the amount of field data is growing. The ODC data
contain several attributes of the defects, which are used to
provide feedback to the development and verification of a
product. ODC can therefore be used as a framework for the
evolution of fault and error models. In the current study,
two ODC attributes were used to depict a defect: fault type
and system test trigger. The selection of the fault type is
implied by the eventual correction, and the type is usually
chosen by the person that makes the correction. The
system test trigger describes the environmental conditions
that made the fault surface during operational usage in the
field.

2.1.1 Fault types
The fault type represents the defect in the source code,

i.e. the cause of an error. ODC employs the following six
fault types related to code:

Assignment, value(s) assigned incorrectly or not
assigned at all.

Checking, missing or incorrect validation of parameters
or data in conditional statements.

Algorithm, efficiency or correctness problems that
affect the task and can be fixed by (re)implementing an
algorithm or local data structure without the need for
requesting a design change.

Timing/Serialization, necessary serialization of shared
resources is missing, wrong resource has been serialized or
wrong serialization technique employed.

Interface, communication problems between users,
modules, components or device drivers and software.

Function, affects a sizeable amount of code and refers
to capability that is either implemented incorrectly or not
implemented at all.

2.1.2 Software triggers
Software triggers are the broad environmental

conditions or activities that work as catalysts to assist
faults to surface as failures [7]. There are three classes of
triggers associated with the three most common activities
of verification: Review/inspection, function test and
system test. The system test triggers are of interest, as they



describe the environmental conditions that were dominant
when the fault surfaced in the field, and they are defined as
follows:

Startup/Restart, the system was being initialized or
restarted due to an earlier shutdown or failure.

Workload volume/Stress, the system was operating
near some resource limit, either upper or lower.

Recovery/Exception, an exception handler or a
recovery procedure was active. The fault would not have
surfaced if some earlier exception had not invoked the
handler or the procedure.

Hardware/Software configuration, triggers related to
unusual or unanticipated configurations.

Normal mode, a trigger that says that no special
conditions must exist for the fault to surface, i.e. the
system was working well within upper and lower resource
limits. Normal mode trigger implies another underlying
trigger, either a review/inspection trigger or a function test
trigger.

2.2 RETAIN and error types

RETAIN is maintained by IBM field service and
contains world-wide information on hardware problems,
software problems, bug fixes, release information etc. Our
interest is in software problems during field operation, and
these are described by defect reports. Each such report in
RETAIN represents a unique defect that surfaced in the
field, and contains some standard attributes (e.g. failure
severity) of the defect and several pages of text. This text
describes the: symptoms of the problem, environmental
conditions and correction of the fault. The text was used to
classify the erroneous system state that a particular
software fault caused.

2.2.1 Failure severity
The failure severity indicates the magnitude of the

customer problem, and the following guidelines are used to
determine the severity of a field failure.

Severity 1 - The customer is unable to use the product,
which has a critical impact on his/her operation.

Severity 2 - The customer is able to use the product, but
his/her operations are severely restricted by the problem.

Severity 3 - The customer is able to use the product
with some restrictions on the functions that he/she can use.
These restrictions, however, do not have a critical impact
on his/her operation.

Severity 4 - The problem causes little or no impact on
the customer’s operation.

2.2.2 Errors
The text in the defect reports pulled from RETAIN was

used to classify the erroneous system state that a particular
software fault caused. However, the error type was not
classified for all defects. The rationales for selecting faults

were that they should: (i) be related to the development;
(ii) cause an erroneous system state; and (iii) have impact
on the user, i.e. severity 1-3. Rationales one and two
exclude fault types not related to code
(Build/Package/Merge, Documentation), and rationale
three, excludes failure severity 4. Thus, the full population
of faults was partitioned into: a relevant part (408 defects)
and an irrelevant part (279 defects). The erroneous states
are grouped into the following four error categories:

Single address error (A). An error falls into this
category if the software fault caused an incorrect address
word. Errors in this category were further divided into the
following types of address word: control block address,
storage pointer, module address, linking of data structures
and register.

Single non-address errors (N). An incorrect non-
address word (e.g. data word) is caused by the software
fault. This error was divided into the following types:
value, parameter, flag, length, lock, index and name.

Multiple errors (M). A software fault can generate
multiple errors at the same time. The errors generated can
be any combination of single errors or be related to a data
structure. These errors were divided into the following
types: values, parameters, address and something else, flag
and something else, data structure and random. The
observant reader might ask how a multiple error of address
and flag was classified, and the answer is simply: we did
not encounter such an error. However, this is an oversight
that must be corrected before the next empirical study is
conducted.

Control errors (C). Some of the software faults
analyzed affected the memory content in a very subtle and
non-deterministic way. Furthermore, some faults did not
affect the memory at all, e.g. interaction with a user or
terminal communication. The resulting errors were divided
into the following types: program management, storage
management, serialization, device management, user I/O
and complex.

The first three error categories are taken from [14]. The
similarities of the categories will enable a comparison
between a large IBM operating system product and the
Tandem Guardian90 operating system. In the current
paper, each of these three error categories is supplemented
with an error type that gives more specific information on
the location of the error (e.g. control block address).

The fourth error category, control errors, is special as
these errors affect the memory in a non-deterministic way,
that is, it was not possible to identify and classify the error
in any of the first three categories. However, it was
possible to capture the incorrect internal behavior from the
textual description in the defect reports, and the error types
of this category depict how that behavior could be
provoked. For instance, the error type storage management
tells us that one module deallocates a region of memory



before it has completely finished using the region. Thus,
that behavior could be emulated via an error injection in a
table that manages the memory allocation/deallocation.

3. Discussion of the questions

3.1 What error model?

This subsection will first compare the distribution of
error categories for a large IBM operating system product
and the Tandem Guardian90 operating system. It then,
presents the fault-error mapping observed in a large IBM
operating system and, finally, argues that the data answer
the first question.

A large IBM OS Tandem GUARDIAN90
Categories % Categories %

Single address 19 Single address 23
Single non-addr. 38 Single non-addr. 38
Multiple 17 Multiple 18
Control 26 Other (9 %)

Unclear (12 %)
21

Table 1. Comparison with [14].
Table 1 compares the distribution of error categories for

the operating system considered in the current paper and
the Tandem Guardian90 operating system [14]. Although
these systems are quite different, an interesting observation
can be made: the variation of the distributions is not
significant ( 2

0.05(3)=7.82 > q(3)=2.07, p=0.56)1. This
suggests that there may be some similarities in the
distribution of the error categories for large, robust
operating systems. The casual reader might ask whether
the classifications are made according to the same
definitions of error categories. Recall the description of

What

1
Formalism used for the c2 test [17]: c2 (df), critical value of chi-

square at the  significance level; q(df), chi-square value computed from
the observed data; and p, probability of occurrence for q(df).

most frequent
large impact

 2

et1 et2 et6 et7 et8 et15 et16 et17
et19 et20 et21

 et10

et10
et21,

2
Note that the error types in italics can be injected with mechanisms

for other error types, e.g. et15 by et1 and et6.



Fault types
Error types # % ft1.

Check.
ft2.

Assign.
ft3.

Algorit.
ft4.

Tim/se.
ft5.
Interf.

ft6.
Func.

Single addr. (A)
et1. Cntr. block addr.
et2. Storage pnt.
et3. Module addr.
et4. Link. data struct.
et5. Register

78
(48)
(14)
(9)
(4)
(3)

19.1
(11.8)
(3.4)
(2.2)
(1.0)
(0.7)

13
(9)
(1)
(3)
(0)
(0)

27
(16)
(5)
(3)
(0)
(3)

26
(17)
(3)
(3)
(3)
(0)

4
(3)
(1)
(0)
(0)
(0)

5
(2)
(2)
(0)
(1)
(0)

3
(1)
(2)
(0)
(0)
(0)

Single non-addr. (N)
et6. Value
et7. Parameter
et8. Flag
et9. Length
et10. Lock
et11. Index
et12. Name

155
(38)
(38)
(37)
(15)
(11)
(8)
(8)

38.0
(9.3)
(9.3)
(9.1)
(3.6)
(2.7)
(2.0)
(2.0)

30
(10)
(8)
(7)
(4)
(0)
(1)
(0)

38
(6)

(11)
(10)
(4)
(1)
(3)
(3)

53
(12)
(10)
(17)
(4)
(2)
(4)
(4)

12
(3)
(1)
(0)
(0)
(8)
(0)
(0)

15
(2)
(6)
(3)
(3)
(0)
(0)
(1)

7
(5)
(2)
(0)
(0)
(0)
(0)
(0)

Multiple (M)
et13. Values
et14. Parameters
et15. Address +
et16. Flag +
et17. Data structure
et18. Random

69
(4)
(3)
(7)

(10)
(37)
(8)

16.9
(1.0)
(0.7)
(1.7)
(2.4)
(9.1)
(2.0)

9
(0)
(0)
(1)
(2)
(6)
(0)

6
(1)
(0)
(1)
(1)
(3)
(0)

32
(2)
(0)
(3)
(4)

(20)
(3)

6
(0)
(0)
(0)
(2)
(3)
(1)

4
(0)
(3)
(0)
(0)
(1)
(0)

12
(1)
(0)
(2)
(1)
(4)
(4)

Control error (C)
et19. Program manag.
et20. Storage manag.
et21. Serialization
et22. Device manag.
et23. User I/O
et24. Complex

106
(35)
(33)
(16)
(11)
(6)
(5)

26.0
(8.6)
(8.1)
(3.9)
(2.7)
(1.5)
(1.2)

10
(4)
(3)
(0)
(2)
(0)
(1)

7
(0)
(7)
(0)
(0)
(0)
(0)

43
(19)
(12)
(2)
(7)
(2)
(1)

32
(8)
(5)

(14)
(2)
(0)
(3)

5
(2)
(1)
(0)
(0)
(2)
(0)

9
(2)
(5)
(0)
(0)
(2)
(0)

Total # 408 100 62
(15.2)

78
(19.1)

154
(37.8)

54
(13.2)

29
(7.1)

31
(7.6)

Table 2. Mapping faults - errors3.

                                                          
3
The reader might be concerned with the classical problem of zeros in the cells. However, this is not an issue as the table presents a full population

and not a sample.

These 12 selected error types (50% of the error types)
will emulate the mapping between fault types and error
categories (see table 2) fairly exactly. Furthermore, they
will cover 79.4% of the observed defects and, more
specifically, 88.9% of the timing/serialization defects. The
conclusion is that the 12 selected error types will be an
appropriate error model, and the differences observed in
the joint distributions can be reduced during the generation
of the set of errors that will be injected (see section 4.1).

Now, the reader might ask: we know the error types and
with what distribution they should be injected, but why are
we concerned with the joint distribution between faults and
errors? The reason is that we want to mimic software faults
and not hardware faults. That is, an erroneous system state
can be caused by software faults or by hardware faults. If
we simply injected the error types without any connection
to a fault (i.e. fault type and fault location), then we could
not claim that the injections emulate software faults in a

controllable way. Thus, the error model is really a fault
and error model. We will elaborate on this when the
second question is discussed.

3.2 Where should the error be injected?

This subsection will first show how the defects were
distributed over the components (i.e. subsystem) in the
system and, second, claim that the data support a random
generation of error locations that represent particular fault
locations.

Table 3 shows how the 408 faults were distributed over
the 48 affected components. The table also presents the
number of modules affected in each component. It can be
seen that 59.5% of the faults were contained in eight of the
affected components. However, it was not possible to
pinpoint any module as particularly fault-prone, and the
average ratio was 1.37 fault per affected module. The



faults experienced are uniformly distributed. That is, the
null hypothesis: the faults are uniformly distributed over
the affected modules, cannot be rejected ( 2

0.05(8)=15.51 >
q(8)=7.34, p=0.50).

The second questionb - where should the error be
injected to emulate a particular software fault? - is
addressed by the data provided by tables 2 and 3. Table 3
shows how the defects are distributed over the
components. It also presents the number of affected
modules and the resulting defect density. For instance,
7.8% of the defects were contained in component D.
Furthermore, the 28 modules affected in that component
had 1.14 faults/module. Thus, the data give us a good,
high-level understanding of how to distribute the injections
over the system components and modules. For instance, if
the system were subjected to 1000 injections, then about
78 faults would be injected into component D. However, to
select the actual error locations, we must consult the data
on the fault-error mapping provided by table 2.

Component # of
faults

% # of affected
modules

Fault /
module

A 43 10.5 33 1.30

B 35 8.6 31 1.13

C 33 8.1 20 1.65

D 32 7.8 28 1.14

E 30 7.4 24 1.25

F 25 6.1 17 1.47

G 25 6.1 23 1.09

H 20 4.9 14 1.43

The other
40 comp. 165 40.5 108 1.53

Total 408 100 298 1.37

Table 3. The components that contained the
faults.
That joint distribution can be used to select actual

locations for injection from a list of all possible locations.
The list of possible locations in the modules that are to be
subjected to injection can be generated by a parser. The
parser would scan through the modules and, for each
statement, generate the triplet: (fault location, fault type,
error type). However, the function defects can probably
not be identified by a parser. The person setting up an
experiment must identify these manually, using the
functional requirements on a component or a module. The
actual fault locations can be randomly selected from the
list of triplets according to the joint distribution provided
by table 2. For instance, the probability of selecting a
location with the pair: (ft1. checking, et6. value) would
be 2.45% ( 10 408 ). When the actual fault locations have

been selected, loader information can be used to produce a
list of actual error locations. Thus, the field data provide

the joint distribution needed for a random selection of
error type and error location that maintains the distribution
of the emulated faults.

3.3 When should the error be injected?

The system clock could be used to inject errors at
randomly selected times. This simple, straightforward
solution would clearly produce errors with the desired
distribution. However, as mentioned earlier, errors can be
caused by software faults or by hardware faults. We intend
to emulate software faults, and the randomness of
hardware-induced errors must therefore be factored out.
Consequently, the error injection must be synchronized
with the execution of the emulated statement, i.e. the
injection is even-driven. Thus, the list of selected errors
(type and location), the related mimicked fault (type and
location), can be used to generate the conditions for
injection. This will enable the construction of software
traps (e.g. breakpoints used by debuggers) that will
synchronize4 the actual error injection with the execution
of the emulated fault location. The usage of these traps will
result in two things: a controlled emulation of software
faults and a reduction of the proportion of overwritten
errors.

3.4 Design of an operational profile

Making a trustworthy parameter estimate (e.g. error
detection coverage) depends on exercising the product as
though it were in the field. We have already covered the

environmental conditions

4
We are concerned with the delay introduced by the trap, e.g. a task

might miss its deadline. Therefore, hardware support for synchronization
would be very convenient, e.g. a watch-point function that is able to
detect a predefined bit pattern on an address bus and a data bus, and
whose detection signal is connected to a maskable interrupt.



Error categories

Trigger # % A N M C

Normal mode 284 69.6 47 120 49 68

Startup/Restart 14 3.4 2 1 5 6

Workload/Stress 27 6.6 4 11 3 9

Recovery/Except. 75 18.4 24 19 12 20

HW/SW Configt. 8 2.0 1 4 0 3

Total  # 408 100.0 78 155 69 106

(%) (19.1) (38.0) (16.9) (26.0)

Table 4. System test triggers by error
categories, i.e. Addr.(A), Non-addr.(N),
Multiple(M) and Control(C).
Clearly, the data on the system test triggers (see table 4)

support the design of an operational profile that represents
the environmental conditions that made a defect surface.
These triggers capture the mix of the customer
environment and thereby provide input to the process of
developing an operational profile. This process is
described in [16]. However, using test cases sampled from
an operational profile might result in excessive time being
wasted, as the error injection is synchronized with the
execution of the emulated fault location. Consequently,
one experiment run is divided into two subsequent parts:
(i) execution of the path in which the emulated fault would
have been located and (ii) representative system usage to
obtain valid estimates of execution parameters. The test
cases used during part one will, based on the list of fault
locations, be selected according to path-based testing
techniques. An example of such usage is [13], which
successfully uses these testing techniques to activate faults
injected into Sun NFS. Input data to the latter part will be
generated as stipulated by SUT [15], i.e. sampled from the
operational profile. Thus, time is not wasted waiting for an
error injection, and the system usage after injection will be
representative of field usage.

4. Generation of the error set (what, where
and when?)

The data on field defects can, as concluded above, be
used to answer four important questions related to error
injection. This section will outline a procedure that
answers the first three questions, i.e. what model, where to
inject and when to inject? The fourth issue, operational
profile and generation of input data that exercises
particular paths, will not be exemplified, as that issue is
thoroughly treated by the testing community. The
procedure for generating the error set can be semi-
automated, and is:

1. Select components, e.g. component A-H in table 3.

2. Distribute the defects over the selected components
according to measured distribution, e.g. table 3

suggests that component A should be exposed to 10.5%
of the faults.

3. Distribute the defects of one component randomly
among its modules according to measured distribution,
i.e. table 3 indicates that the faults should be uniformly
distributed.

4. Generate a list of possible fault locations within each
selected module, e.g. using a parser. Each location in
the list is related to a fault type and resulting error
type(s).

5. Select the actual fault locations within each module
randomly according to the measured joint distribution
between fault types and error types (e.g. table 2) from
the lists of all possible fault locations.

6. Generate a list of actual error locations using the list
of actual fault locations and loader information.

7. Decide when the errors should be injected, based on
the list of actual fault locations, i.e. construct the
software traps (injection condition).

However, although this procedure is general, it has
some limitations: identification of function defects requires
manual intervention, and representative data on field faults
must be available as the field data presented is not
representative for all software systems. The latter
limitation is shared with all techniques for the generation
of representative fault/error sets.

The following subsections will present a simple
example that is meant to illustrate steps 4 to 7 in the
procedure for generating the error set. A module (traffic
light task, see figure A in the appendix) of a distributed
computer control system for traffic control will be used as
an example. That module is part of the intersection signal
control component. The underlying run-time system will
not be considered in this example. Thus, only a subset of
the error types given in table 2 is injectable in the traffic
light task: value, parameter, flag, values and flag +.
Nevertheless, the traffic light task will be used to illustrate
some aspects of the design of an error injection
experiment.

4.1 Error type and error location (what and
where?)

Steps 4 to 6 are relevant to the selection of error type
and error location in a module. The prerequisite of steps 4
to 6 in the error-generating procedure is that step 3 has
decided that the traffic light task will be subjected to
injection.

Step 4: A list of possible fault locations is generated
from the source code. The source code is given in figure A,
and the resulting list of some of the possible fault locations
is shown in table 5. The first column in that table shows
the locations as the corresponding line number in figure A.



The table also gives the fault type and the error type for a
particular location. This table can be generated
automatically by a parser. However, identification of
function defects requires human intervention.

Steps 5 and 6: The actual fault location is selected
randomly from the list of all possible fault locations,
according to the joint distribution between fault types and
error types. The mapping between fault types and error
types (see table 2) is used to obtain the joint distribution.

Fault location Fault type Error type
Light,8 ft2. Assign. et8. Flag
Light,9 ft2. Assign. et6. Value
Light,11 ft5. Interf. et7. Parameter
Light,12 ft2. Assign. et6. Value
Light,16 ft1. Check. et6. Value
Light,17 ft5. Interf. et7. Parameter
... ... ...
Light,55 ft2. Assign. et6. Value
... ... ...
Light,73 ft2. Assign. et8. Flag

Table 5. Possible fault locations.
Table 6 shows the joint distribution between the fault

type and the error categories (extracted from table 2). For
instance, assume that we want to inject 1000 errors into the
distributed computer control system; then, 74 and 93 single
non-address errors will be injected to emulate checking
defects and assignment defects, respectively.

% in cells Errors

Faults % A N M C
ft1. Check. 15.20 3.19 7.35 2.21 2.45
ft2. Assign. 19.12 6.62 9.31 1.47 1.72
ft3. Algorit. 37.75 6.37 12.99 7.84 10.54
ft4. Tim/ser. 13.24 0.98 2.94 1.47 7.84
ft5. Interface 7.11 1.23 3.68 0.98 1.23
ft6. Function 7.60 0.74 1.72 2.94 2.21

Total % 100.00 19.12 37.99 16.91 25.98

Table 6. Fault types by error categories, i.e.
Addr.(A), Non-addr.(N), Multiple(M) and
Control(C).
Now, as discussed previously, we want to use a reduced

set of error types: for single non-address errors, that set is:
et6, et7, et8 and et10. The distribution of those error
types over checking and assignment defects is shown in
columns one and three in table 7. The number of errors to
inject for the emulation of ft1 and ft2 by a reduced set
of N errors is shown in columns two and four in table 7.
That table is obtained by a simple multiplication of
probabilities, for instance, the frequency 29 in cell (ft1,
et6) by: ( ) ( )( )1000 30 408 10 10 8 7 0* * + + + .

ft1. Checking ft2. Assignment

Category N,
reduced

Prob. (%) Freq. # Prob. (%) Freq. #

et6. Value 2.94 29 2.00 20

et7. Parameter 2.35 24 3.66 37

et8. Flag 2.06 21 3.33 33

et10. Lock 0.0 0 0.34 3

Total 7.35 74 9.31 93

Table 7. Single non-address errors (N) by
ft1 and ft2, distribution and injection
frequency.
A possible output of steps 5 and 6 is shown in table 8.

The table shows the selected error locations and the
emulated fault type and fault location. Note that only errors
are injected, although the relation to fault type and fault
location is needed to assure that software faults are
emulated.

Error
location

Error
type

Fault
type

Fault
location

REQ_COLOR et6. ft1. Light,16
VEHICLE_LIGHT et6. ft2. Light,55

Table 8. Selected error locations.

4.2 Injection time (when?)

The last step in the generation procedure is to decide the
injection condition. Errors could be injected at randomly
selected times. However, we have two reasons not to make
such a choice: reduction of the proportion overwritten
errors, and a controlled emulation of software faults. Our
approach is therefore to synchronize the injection of an
error that mimics a fault type at a particular fault location
via software traps.

Step 7: The list of actual fault locations is used to
produce the conditions for injection (see table 9). For
instance, the injection of et6 at error location
VEHICLE_LIGHT related to the write caused by fault
location light,55 must take place after
VEHICLE_LIGHT has been assigned red, and before
time-out Red2Green_Pedestrian has expired.
Simply, inject after line 55 (see appendix figure A) has
been executed and before line 57 is executed.

Fault
location

Condition

Light,16 not Error_flag and
Set_light accepted and before
Req_color:= Mycolor

Light,55 timeout Green2Red_Vehicle expired and
after Vehicle_light:= red and before
timeout Red2Green_Pedestrian expired

Table 9. Conditions for the software traps.



5. Summary of results

This paper provides answers to four key questions
related to fault forecasting by means of error injection. The
questions posed and resolved are: (i) what is the
appropriate error model that mimics representative
software faults; (ii) where should the error be injected to
emulate a particular software fault; (iii) when should the
error be injected; and (iv) how should a representative
operational profile be designed that will maintain
reasonable experiment times?

More specifically, the paper illustrates how the data on
all faults experienced by one release of a large IBM
operating system product during a two-year period can be
used to generate a set of errors that maintains the
distribution of the set of faults observed in the field, and
the key results are:
1. The experienced faults are uniformly distributed (1.37

fault per module), that is, the null hypothesis: the faults
are uniformly distributed over the affected modules
cannot be rejected (q(8) = 7.34, p = 0.50).
Furthermore, the data show how the faults are
distributed over the affected components. Thus, the
data give us a good, high-level understanding of how to
distribute the injections over the system components
and modules.

2. The heuristics proposed that selects 50% of the error
types such that 79.4% of the observed defects is
covered. Furthermore, the selection assures that 88.9%
of the timing/serialization defects are covered, as they
tend to cause high severity failures. Thus, the joint
distribution between the twelve selected error types and
six fault types clearly supplies an appropriate error
model.

3. A general procedure that uses field data to generate a
set of injectable errors, in which each error is defined
by: error type, error location and injection time.
Furthermore, the procedure assures that the injected
errors emulate software faults and not hardware faults.
The main features of that procedure are:
• The distribution of faults over the affected modules

is used to select modules that are to be subjected to
error injection.

• The joint distribution between the error types and
fault types is used to sample actual locations for
error injection from a list of all possible locations
(error type, fault type, fault location). The list of
possible fault locations in the modules that are to be
subjected to injection can be generated by a parser.
The actual error locations are obtained from the
sampled fault locations via loader information.

• The list of sampled fault locations is used to
generate the conditions that control the event-driven
error injection, that is, a software trap (e.g.

breakpoint) synchronizes the injection with the
execution of a selected fault location.

4. One experiment run is divided in two subsequent parts:
(i) execution of the path in which the emulated fault
would have been located, and (ii) representative system
usage to obtain valid estimates of execution
parameters. The input data to the first part are chosen
such that they satisfy the injection condition, i.e. the
software trap. The list of fault locations and the trap
conditions form the basis of test case selection
according to path-based testing techniques. Input data
to the latter part will be generated as stipulated by
statistical usage testing by means of the system test
triggers. Consequently, time is not wasted waiting for
an error injection, and the system usage after injection
will be representative of field usage.

5. A simple example that gives insight into the procedure
for generating the error set. Furthermore, the example
indicates how that procedure can be automated.

6. The distribution of error categories for a large IBM
operating system and the distribution of errors in the
Tandem Guardian90 operating system reported in [14]
were compared and found to be similar, as the variation
of the distributions was not statistically significant
(q(3) = 2.07, p = 0.56). This result adds a flavor of
generality to the field data presented in the current
paper.
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Appendix
1 task type TRAFFIC_LIGHT_TASK is
2 entry INITIALIZE(MYDIR : in direction);
3 entry SET_LIGHT(MYCOLOR: in color);
4 entry RESET;
5 end TRAFFIC_LIGHT_TASK;
6 task body TRAFFIC_LIGHT_TASK is
7 DIR: direction;
8 ERROR_FLAG : boolean := false;
9 REQ_COLOR, PEDESTRIAN_LIGHT,

VEHICLE_LIGHT: color := flashing;
10 begin
11 accept INITIALIZE(MYDIR:in direction) do
12 DIR := MYDIR;
13 end;
14 loop
15 select
16 when not ERROR_FLAG =>
17 accept SET_LIGHT(MYCOLOR:in color) do
18 REQ_COLOR = MYCOLOR;
19 end;
20 case VEHICLE_LIGHT is
21 when flashing =>
22 if REQ_COLOR = red then
23 PEDESTRIAN_LIGHT := red;
24 VEHICLE_LIGHT := red;
25 delay RED2GREEN_PEDESTRIAN;
26 PEDESTRIAN_LIGHT := green;
27 elsif REQ_COLOR = green then
28 PEDESTRIAN_LIGHT := red;
29 VEHICLE_LIGHT := yellow;
30 delay RED2GREEN_VEHICLE;
31 VEHICLE_LIGHT := green;
32 delay MIN_GREEN_TIME;
33 end if;
34 when red =>
35 if REQ_COLOR = green then
36 PEDESTRIAN_LIGHT := red;
37 delay GREEN2RED_PEDESTRIAN;
38 VEHICLE_LIGHT := yellow;
39 delay RED2GREEN_VEHICLE;
40 VEHICLE_LIGHT := green;
41 delay MIN_GREEN_TIME;
42 elsif REQ_COLOR = flashing then
43 VEHICLE_LIGHT:= flashing;
44 PEDESTRIAN_LIGHT:= flashing;
45 end if;
46 when yellow => ;
47 -- This case should not occur
48 PEDESTRIAN_LIGHT := flashing;
49 VEHICLE_LIGHT := flashing;
50 ERROR_FLAG := true;
51 when green =>
52 if REQ_COLOR = red then
53 VEHICLE_LIGHT := yellow;
54 delay GREEN2RED_VEHICLE;
55 VEHICLE_LIGHT := red;
56 delay RED2GREEN_PEDESTRIAN;
57 PEDESTRIAN_LIGHT := green;
58 elsif REQ_COLOR = flashing then
59 PEDESTRIAN_LIGHT:= flashing;
60 VEHICLE_LIGHT:= flashing;
61 end if;
62 end case;
63 or
64 accept RESET do
65 PEDESTRIAN_LIGHT := flashing;
66 VEHICLE_LIGHT := flashing;
67 ERROR_FLAG := false;
68 end;
69 or
70 delay WATCHDOG_TIMEOUT;
71 PEDESTRIAN_LIGHT := flashing;
72 VEHICLE_LIGHT := flashing;
73 ERROR_FLAG := true;
74 end select;
75 end loop;
76 end TRAFFIC_LIGHT_TASK;

Figure A. The code for the traffic light task.


